
1

PROCESS PLANNING FOR A MILLING MACHINE
FROM A FEATURE-BASED DESIGN

Dr. Thomas R. Kramer

Guest Worker, National Bureau of Standards, &
Research Associate, Catholic University

ABSTRACT

In the Vertical Workstation (VWS) of the NBS Automated Manufacturing
Research Facility, metal parts are machined automatically from a feature-based
design. A simple two-and-a-half dimensional part may be designed and machined
within an hour, allowing half the time for design input. With a design already in
hand, the VWS software (which is written in LISP and runs on a Sun computer) will
automatically prepare a process plan for a milling machine for making a part of the
given design. The heart of the process plan is a list of machining operations to be
carried out. The operations are selected by the system from among its repertoire of
21 possible operations. The process plan also includes a header and a list of tool
requirements. The process plans produced by the system are later used as input to an
automatic NC-coding system which writes code for the milling machine’s controller.

INTRODUCTION

The Automated Manufacturing Research Facility (AMRF) at the National
Bureau of Standards (NBS) is an experimental facility for developing techniques and
standards for automated manufacturing. The Navy is a cosponsor of the AMRF and
provides a large share of the funding. The AMRF has been described in several
papers [1, 2, 3]. The AMRF includes three machining workstations, a cleaning and
deburring workstation, an inspection workstation, and a material handling system.
One of the machining workstations is the Vertical Workstation (VWS).

The VWS may be operated in stand-alone mode or as a subordinate element
in the AMRF control hierarchy. Running in stand-alone mode, the VWS is a
computer-integrated automated machining workstation. It includes a control system,
an interactive system for creating and editing designs, an automatic process planning
system, and an automatic NC-code generator.

2

The system is controlled from a Sun microcomputer. Other machinery and
computers of the VWS include a Monarch VMC-75 milling center with a GE2000
controller, a Unimate robot with its Unimate controller to tend the milling center,
two roller tables which serve as the interface between the VWS and the materials
handling system, a powerful vacuum cleaner for chip removal, a pneumatic vise to
hold parts being machined, pneumatic NBS-made grippers for the robot, a hydraulic
pallet clamping system, signal processing electronics, and an HP 9000 computer
which stands between the Sun and all the other equipment as an overseer.

The VWS produces machined metal parts. It is possible to design and machine a
simple part within an hour in the VWS. To accomplish this, it is necessary to have a
design protocol which lends itself to automatic machining. A user-friendly Part
Design Editor has been developed which prepares design documents in the necessary
format. The user sits at the Sun workstation and creates a design using the editor. The
Process Planner is then called to write a plan for how to machine a part of that design.
Next NC-code is generated automatically from the design and the plan. Finally the
user tells the control system to make the part. The control system coordinates the
activities of the workstation equipment so that the part blank is loaded onto the
milling machine, the NC-code is sent to the milling machine and executed (making
the part), and the finished part is unloaded.

The family of parts of interest in the VWS is those that are milled, rather than
parts that are turned, stamped, or made in some other forming operation. Emphasis
is placed on machining in small lots, roughly one to fifty parts of a single design.
Materials of interest are those which can be machined, mainly metals and some
plastics. Parts have been made from aluminum, steel, and brass during test runs.

The software for the VWS has been under development for three years by the
author, Mr. Charles McLean, Dr. Jau-Shi Jun of NBS, Mr. Kie Nakpalohpo and
others. In this paper this software is called the VWS2 system. It is written in the
computer language Franz LISP and runs on a Sun microcomputer.

Six principal modules comprise the VWS2 system: the Production
Management Operating System (the control system), the State Table Editor, the
Equipment Program Generator, the Part Design Editor, the Process Planner, and the
Data Execution module. Two of the VWS2 modules (the Process Planning module
and the Data Execution module) deal with process plans. Process plans are the output
of the Process Planning module and are part of the input to the Data Execution
module. In addition to the principal modules, there are several distinct subsystems
(such as drawing, which works for two of the modules). This paper deals in detail
with only the Process Planning module. The workstation is described in more detail

3

in [4].
The Part Design Editor, Process Planning and the Data Execution modules

may be accessed by the user through a small friendly front-end called vws_cadm.
Vws_cadm asks the user a number of questions about what the user wants to do and
then activates the appropriate module according to the user’s desires. Vws_cadm has
several other uses.

The overall architecture of the VWS2 system is largely due to Mr. Charles
McLean, Group Leader of the NBS Production Management Systems Group.
Process planning concepts and issues at the AMRF have been described in
“Interactive Process Planning in the AMRF” by Mr. Peter Brown and Mr. McLean
[5], and in “Research Issues in Process Planning at the National Bureau of
Standards” [6] by Mr. Brown and Dr. Steven Ray.

This paper discusses process plans only as they relate to the VWS milling
machine. In the remainder of the paper we will describe (1) the design protocol in the
VWS2 system, (2) the process plan protocol for the VWS milling machine, (3)
process plan enhancement, (4) process planning generation for the VWS milling
machine, and (5) limitations of the system.

DESIGN PROTOCOL IN THE VWS2 SYSTEM

The VWS2 system uses a feature-based design protocol [7]. The design of a
part is expressed as a list of features on a piece of stock. The piece of stock is always
a rectangular block. The stock is fixed with respect to a three-dimensional cartesian
coordinate system at the bottom, front, left corner of the block. The design system
currently assumes that all features are being made from one side of the block.

Although all the features and subfeatures are purely geometric, they were
selected to be included in the system on the basis of being features commonly found
on machined parts that could be produced in one, or at most a very few, machining
operations. Each feature and subfeature is a removed volume.

The primary features in the system in September, 1987 are: chamfer_out,
groove, hole, pocket, straight_groove, text, contour_groove, contour_pocket, and
side_contour. There are also subfeatures which may be made on the primary
features: chamfer_out, chamfer_in, countersink, and thread. A feature is specified in
the system by giving its name and the values of several parameters which specify its
location, shape, and size. Parameter information is kept by storing the name of each
parameter followed by its value. A summary of information about the features is

4

given in Table 1.

TABLE 1 FEATURE PARAMETERS AND SUBFEATURES

Feature
Name

Feature
Appearance

Required
Parameters

Optional
Subfeature

s

Optional
Parameters

chamfer_out 45 degree bevel on edge
of block

chamfer_out_depth none none

contour_groove Groove using a contour
outline as tool path or
edge. Bottom is round or
flat.

corners
depth
width
bottom_type

none offset
reference_feature

contour_pocket Material inside a contour
outline removed to
constant depth

corners
depth

none reference_feature

groove Groove using a rectangle
with rounded corners as
tool path. Bottom is
round or flat

upper_l_x upper_l_y
lower_r_x lower_r_y
depth
width
bottom_type
corner_radius

chamfer_in
chamfer_out

chamfer_in_depth
chamfer_out_depth
reference_feature

hole Circular hole with flat or
conical bottom. May go
through part

center_x
center_y
diameter
depth
bottom_type

chamfer_in
countersink
thread

chamfer_in_depth
countersink_depth
thread_diameter
thread_depth
threads_per_inch
reference_feature

pocket(2 types)
pocket_corners

Material inside a
rectangle with rounded
corners removed to
constant depth

upper_l_x upper_l_y
lower_r_x lower_r_y
corner_radius
depth

chamfer_in chamfer_in_depth
reference_feature

pocket_center Same as pocket_corners center_x center_y
length width
corner_radius
depth

chamfer_in chamfer_in_depth
reference_feature

side_contour Material outside a
contour outline removed
to constant depth

corners
depth

none reference_feature

straight_groove Groove using a straight
line as tool path. Bottom
is round or flat

x1 y1 x2 y2
depth width
bottom_type

chamfer_in chamfer_in_depth
reference_feature

5

The “text” feature type requires that there be a template for each letter of each
font stored in the database. A default font called “plain” was created for the system
by Alton Quist. The VWS2 system has a font_making facility which creates new
fonts by transformations of the plain font. We have been using four additional fonts
called “broad”, “round”, “italic”, and “angular”, which were made by this facility. A
font called “cilati” was created in less than a minute using this facility for the
example part shown later in this paper.

The three contour features share the idea of a contour outline. A contour
outline is a continuous string of straight line segments and arcs of circles. The Part
Design Editor provides an easy way of making contour outlines. A contour_groove
is made when a tool follows a contour outline. A contour_pocket is a flat-bottomed
feature made by removing all the material inside a contour outline to a fixed depth.
A side_contour is a mesa-like feature created by removing all the material outside a
contour outline to a fixed depth. A contour outline for a contour_groove or a
side_contour must be closed and must not intersect itself.

The design protocol includes the use of “reference features”. If feature A is to
be made at the bottom of feature B, then one of the parameters of feature A is
“reference_feature”, and the value of that parameter is the feature number of feature
B. Whenever B is the reference feature for A, the outline of feature A must fit within
the outline of feature B, and the bottom of feature B must be flat (except in the case
of concentric drill holes). The idea of a reference feature is illustrated in Figure 1,
which shows a hole having a pocket as its reference feature.

text Letters and digits in five
fonts. Upper case only.
Round bottom only

lower_l_x lower_l_y
text
height depth
line_width

none font
reference_feature

TABLE 1 FEATURE PARAMETERS AND SUBFEATURES

Feature
Name

Feature
Appearance

Required
Parameters

Optional
Subfeature

s

Optional
Parameters

6

The design data structure is a tree of attribute-value pairs. The value of some
attributes is a subtree. For example, the design itself consists of two pairs: the
attribute “header” followed by the header subtree (which includes the id number of
the design, a very brief description, and the dimensions of the block) and the attribute
“features” followed by the features subtree. The features subtree is composed of
pairs in which the attributes are integers and the values are feature descriptions. This
pairwise structure goes down to the lowest level of the design. The features are
numbered sequentially starting with 1. The feature number is important as an
identifier of the feature, but it would make no difference to the system if the features
were scrambled and renumbered.

Table 2 shows an example of the design of a part. We will call it the ASME
part for future reference. A picture of the ASME part prepared by the VWS Part
Design Editor is shown in Figure 2. The ASME part is a demonstration part
containing five feature types and three subfeature types. The design document of
Table 2 and the picture of Figure 2 were prepared in 15 minutes using the interactive
Design Editor. The ASME part has no mechanical function.

FIGURE 1 - REFERENCE FEATURE

7

TABLE 2 ASME PART DESIGN
(setplist ’asme ’
(header (header

design_id asme
material aluminum
block_size (block_size

 length 6 width 2.95 height 1.95)
description “asme demo part”)

 features (features
 1 (1 feature_type side_contour

 corners (corners
 1 (1 x 0 y 2.5 radius 0.4)

 2 (2 x 5 y 2.5 radius 1)
 3 (3 x 4.5 y 0 radius join_back))
 depth 0.6)

 2 (2 feature_type hole
 center_x 0.75
 center_y 0.6
 diameter 0.316
 depth 0.8
 bottom_type conical
 thread_diameter 0.375
 threads_per_inch 16
 thread_depth 0.5
 countersink_diameter 0.45
 reference_feature 1)

 3 (3 feature_type hole
 center_x 0.75
 center_y 0.6
 diameter 0.1719
 depth 0.3
 bottom_type conical
 reference_feature 2)

 4 (4 feature_type text
 text “asme”
 font cilati
 lower_l_x 2
 lower_l_y 1.8
 height 0.5
 depth 0.015
 line_width 0.1187434)

 5 (5 feature_type pocket_corners
 upper_l_x 3.2
 upper_l_y 1.5
 lower_r_x 4.5
 lower_r_y 0.9
 depth 0.3
 corner_radius 0.3
 chamfer_in_depth 0.05)

 6 (6 feature_type straight_groove
 x1 4.25
 y1 1.25
 x2 3.5
 y2 1.1
 depth 0.2
 width 0.25
 bottom_type round
 reference_feature 5))))

8

FIGURE 2 - DRAWING OF ASME PART

9

PROCESS PLAN PROTOCOL FOR THE VWS MILLING MACHINE

In ANSI standard Z94.10 - 1972, published by ASME, the term “process
planning” is defined as “a procedure for determining the operations or actions
necessary to transform material from one state to another” [8]. Chang and Wysk say,
“process planning could be defined as the act of preparing detailed instructions to
produce a part” [9]. In this paper we use “process plan” to mean the detailed
instructions mentioned by Chang and Wysk. A method of describing process plans
is called a process plan protocol.

To be usable in the VWS2 system, the format of a milling machine process
plan in the LISP environment must be a LISP property list. Outside of the LISP
environment there are two formats for process plans which are usable by the VWS.
The first is an implementation for the VWS of the AMRF standard [10]. The second
is a LISP-readable format. This paper describes only the LISP-readable format. A
full description of both is given in [11].

Although the process plan protocol described here was created for the VWS
milling machine, plans prepared according to the protocol could be used by any
milling machine with equivalent capabilities. With the possible exception of
probing, most modern NC-controlled milling machines have the capabilities needed
to carry out the process plans generated in the VWS. Thus the plans themselves
would not need modification (although the NC-coding system would). In this sense
the VWS process plan protocol is machine independent.

A process plan for making the ASME part is shown in table 3. It was prepared
by the VWS2 Process Planning module in ten seconds following 15 seconds of user
input. For the author to prepare the same plan using a computer text editor would
require over an hour. No test has been conducted to compare the system with the
performance of an expert machinist, but it seems unlikely that human speed could
come within a factor of ten of the automatic system.

Process plans in the AMRF standard format have four sections: (1) a header
section, (2) a parameters section, (3) a requirements section, and (4) a procedure
section. The LISP-readable format used for the VWS milling machine does not
require a parameters section, but the other three sections correspond to the AMRF
standard.

10

(setplist ’asme_plan
 ’(header (header
 plan_id asme_plan
 design_id asme
 material aluminum)
 steps (steps
 1 (1 work_element initialize_plan
 prog_name “asme demo part”)
 2 (2 work_element set0_corner
 tool_type_id probe_0.25
 corner 1
 x_offset 0.0
 y_offset 0.0
 near_x 17.3
 near_y 7.45
 precedent_steps (1))
 3 (3 work_element

mill_side_contour
 feature_id 1
 tool_type_id

end_mill_1.0_2_ab
 precedent_steps (2))
 4 (4 work_element mill_pocket
 feature_id 5
 tool_type_id

end_mill_0.5625_2_ab
 precedent_steps (3))
 5 (5 work_element mill_text
 feature_id 4
 tool_type_id

ball_nosed_end_mill_0.25_4_bs
 precedent_steps (4))
 6 (6 work_element

machine_chamfer_in
 feature_id 5
 tool_type_id

chamfer_0.375_3_abs
 precedent_steps (5))

 7 (7 work_element mill_straight_groove
 feature_id 6
 tool_type_id

ball_nosed_end_mill_0.25_4_bs
 precedent_steps (6))
 8 (8 work_element drill_hole
 feature_id 2
 tool_type_id drill_0.316_2_abs
 precedent_steps (7))
 9 (9 work_element machine_countersink
 feature_id 2
 tool_type_id countersink_0.75_1_ab
 precedent_steps (8))
 10 (10 work_element tap_thread
 feature_id 2
 tool_type_id tap_0.375_4_abs
 precedent_steps (9))
 11 (11 work_element drill_hole
 feature_id 3
 tool_type_id drill_0.1719_2_abs
 precedent_steps (10))
 12 (12 work_element close_plan
 precedent_steps (11)))
 tool_requirements (
 probe_0.25
 end_mill_1.0_2_ab
 end_mill_0.5625_2_ab
 ball_nosed_end_mill_0.25_4_bs
 chamfer_0.375_3_abs
 drill_0.316_2_abs
 countersink_0.75_1_ab
 tap_0.375_4_abs
 drill_0.1719_2_abs)))

TABLE 3 PROCESS PLAN FOR ASME PART

11

In the LISP-readable format, the header must specify a plan_id, the design_id,
and the kind of material that is intended to be milled using the plan. Other
information, such as the plan version and the name of the process planner may
optionally be included.

The heart of a process plan is the procedure section. This is a list of steps to be
carried out. Each step describes some operation. What is supposed to occur when the
operation is carried out must be commonly understood by the planner and the
controller that carries out the plan. The description is given by specifying the values
of several parameters, one of which is always “work_element”, the name of the
operation. Each work element has its own set of parameters, but a given parameter
type (tool_type, speed, feed_rate, pass_depth, and changer_slot, for example) may
be used for many or all types of work elements. A summary of work elements is
given in Table 4.

required
center_drill_depth, fptw
pw
counterbore_depth, fptw
fptw
See footnote 2, ptw
See footnote 2, ptw
prog_name, w
fptw
fptw
fptw
fptw
fptw
fptw
fptw
fptw
fptw
fptw
near_x, near_y, near_diam,
x_offset, y_offset, ptw
near_x, near_y, corner,
x_offset, ptw
x_loc, y_loc, offset, ptw
fptw

TABLE 4 SUMMARY OF WORK ELEMENTS

Work Element
Name

center drill
close_plan
counterbore
drill_hole
face_mill
fly_cut
initialize_plan
machine_chamfer_in
machine_chamfer_out
machine_countersink
mill_contour_groove
mill_contour_pocket
mill_groove
mill_pocket
mill_side_contour
mill_straight_groove
mill_text
set0_center

set0_corner

set0_z
tap_thread

Comments

Makes a small conical starter hole.
Must be last step. Ends machining.
Bores existing hole to given depth.
Drills a hole with a twist drill.
Reduces height of workpiece.
Reduces height of workpiece.
Must be first step. Starts machining.
Chamfers hole, pocket, groove, etc.
Chamfers block or island in a groove.
Countersinks an existing hole.
Mills a contour_groove.
Mills a contour_pocket.
Mills a groove.
Mills a pocket.
Mills a side_contour.
Mills a straight_groove.
Mills a text string.
Sets x and y zero by probing a hole.

Sets x and y zero by probing a corner.

sets z zero by probing top of part.
Threads an existing hole.

optional
drs

drs
drs
dors
dors

drs
drs
drs
drs
dors
drs
dors
dors
drs
drs

drs

Enhanced Plan
Parameters Required

center_drill_depth, cdfprstw
pw
counterbore_depth, cdfprstw
cdfprstw
See footnote 2, cdoprstw
See footnote 2, cdoprstw
prog_name, w
cdfprstw
cdfprstw
cdfprstw
cdfprstw
cdfoprstw
cdfprstw
cdfoprstw
cdfoprstw
cdfprstw
cdfprstw
near_x, near_y, near_diam,
x_offset, y_offset, cptw
near_x, near_y, corner,
x_offset, y_offset, cptw
x_loc, y_loc, offset, cptw
cdfprstw

Unenhanced Plan Parameters

1. c=changer_slot, d=pass_depth, f=feature, o=stepover, p=precedent_steps, r=feed_rate, s=speed, t=tool_type_id, w=work_element
2. Face_mill and fly_cut require: upper_l_x, upper_l_y, lower_r_x, lower_r_y, depth, and z_surf.

12

The parameters for a machining operation usually include the feature number
of a feature from the design. This serves as a pointer to geometric information about
the feature, such as its depth or its center. If a step is independent of a feature in a
design (in a zero-setting operation, for example), then it is necessary to carry
geometric information in the step.

Because of the relation between plan steps and design features, it is feasible to
have a process plan for only partial machining of a design. A part made according to
such a plan would have some but not all of the features of the part specified in the
design.

The first step is always initialize_plan and the last always close_plan. All steps
in between are machining operations. The VWS2 system currently supports 19
machining operations in addition to initialize and close, 16 for cutting metal and 3
for probing. Information about these operations is kept in the LISP environment in a
“machine_ops” database.

Traditionally, the steps in a process plan have been sequentially ordered and
carried out in that order. It is usually possible, however, for the steps to be executed
in some other order, with only the requirement that before a given step is carried out,
some set of other steps must already have been completed. These other steps are
called the “precedent steps” for the given step. In the VWS2 system the steps of a
process plan are numbered sequentially as a convenient method of identification, but
execution is not necessarily sequential. Each step in a plan, except initialize_plan,
which must have no precedent steps, carries a list of precedent steps with it. The
assignment of precedent steps must be such that the close_plan step cannot be
executed until all other steps have been executed.

In the LISP-readable format, the requirements list is a list of tool type names
for the tools needed to make the part. The type name is not a unique identifier of a
tool in the milling machine. There may be several tools or none in the machine with
a given type name.

PROCESS PLAN ENHANCEMENT

In order to have a process plan be as broadly useful as possible, it is desirable
that certain information NOT be in the plan and that the system which executes the
plan have the freedom to make alterations to the plan. The plan is then altered (or
enhanced) by the executing system just before it is executed, according to the user’s
desires and the workstation conditions prevailing at the time of execution. The

13

VWS2 Data Execution module enhances a process plan in several ways just before
execution [11].

One type of data which is best omitted until execution is the changer slot
number of a tool. That way a single plan may be used for many different machine
setups, as long as all the required tools are in some changer slot. Slot numbers are
inserted in the enhanced plan. If any of the required tool types is not present on the
milling machine, the Data Execution module notifies the user of the problem and
quits.

It is convenient if a single plan can be used for different initial workpieces. In
the VWS, for example, if a workpiece is too tall it may be milled down to the correct
height by a face milling operation inserted in the enhanced plan. Or, if a workpiece
already has some of the features in the design in it, the steps in the plan that would
make the features that already exist are deleted.

It is also convenient to use a single plan for different fixturings of the
workpiece. For example, if a plan anticipates milling in the vise and establishing the
zero value for z with respect to the vise, but the user wants to mill in the pallet area
and establish z-zero with respect to the top of the part, the Data Execution module
will change the set0_corner step of the plan and insert a set0_z step.

Some users like to have speeds, feed rates, stepovers, and pass depths included
in a process plan, while other users prefer to omit those items and have them
determined at the time NC-code is written. The VWS2 system gives the user a
choice. If any of these four items is required but is missing, the Data Execution
module inserts it in the enhanced plan. If any of the four items is present, the existing
value is used. Only missing but required values are inserted.

During enhancement, if a step is inserted or deleted, the module renumbers the
steps of the plan and changes the precedent steps of each step to match the new
numbering.

If a step is inserted requiring a new tool, the tool is put into the list of tool
requirements. If a step is deleted, and the tool used in that step is not used in any other
step, the tool is removed from the list of tool requirements.

14

PROCESS PLAN GENERATION FOR THE VWS MILLING MACHINE

The VWS2 Process Planning module is a set of functions and data embedded
in the VWS2 LISP environment. It takes the design of a part (in VWS design
protocol format) as input and produces a process plan for milling a part of the given
design. The module is fully automatic once the user has specified what it should do.
The process plan is stored in the LISP environment. Optionally, the module will print
out a copy of the plan in either or both of the formats described earlier. The user may
edit a process plan produced by the Process Planning module by using a text editor,
if that is desired.

The software which generates process plans is based on simple rules for
selecting and ordering machining operations. The rules are built into the software
and not kept in a separate database.

The reason that a plan can be created by relatively simple routines is that the
VWS2 design protocol was specifically tailored to facilitate process planning. The
key characteristics of the design protocol that facilitate process planning are:
1. It is a constructive solid geometry type system in which subtraction of primitive
volumes is the only operation allowed.
2. Each primitive volume (or feature) in the protocol may be produced by one or a
few common machining operations.
3. The notion of a reference feature makes it easy to partially order machining
operations.

The header of a process plan is easily generated from information provided by
the user, and the tool requirements list is simply extracted from the steps of the plan
after the steps have been generated.

The first, second, and last steps are always “initialize_plan”, “set0_corner”,
and “close_plan”, respectively. The system assumes that the part is to be made in the
vise of the milling machine, and sets the parameters of set0_corner appropriately for
the vise. The rest of the plan is created as follows.

Divide Design into Levels

First, the design is divided into levels. There may be only one level or many.
There is no maximum, but the number of levels cannot be larger than the number of
features. The first level contains all those features which have no reference feature.
The second level contains all those features whose reference feature is in the first

15

level. The third level contains all those features whose reference feature is in the
second level, and so on. If any closed loops of reference features have been put into
the design, this error is detected during the process of dividing the design into levels.
The ASME part has three levels: level 1 includes features 1, 4, and 5, level 2 includes
features 2 and 6, and level 3 includes only feature 3.

Notice that the assignment of a feature to a level is not determined by the depth
of the feature. Feature 1 on level 1, for example, is deeper than feature 6 on level 2.

The list of steps is put together by making a sublist of steps for each level, and
then appending all the sublists together in level order. This assures that the reference
feature for any given feature will always be made before the given feature. Since a
feature always fits inside the outline of its reference feature, it is certain that there
will be clear access from above to a feature once its reference feature has been made.
There are other ways to get that assurance, but this one seems reasonable and has
been implemented. Dividing the design into levels also reduces the problem to that
of how to plan to machine a single level.

Generate Steps for Each Level

Within a level, operations are selected for making each feature in two stages.

1. The operation selection function for that feature type named in the features
database selects operations for making the main feature.

2. The feature is examined for optional parameters indicating that it has
subfeatures. If these parameters are found, then the operation selection function for
each subfeature type selects operations for making the subfeature. Except in the case
of a hole feature, each operation selector has only one choice of machining operation
to make a feature or subfeature. Each operation selector calls the tool selector to
select a tool to perform the operation. The actions of the 12 operation selectors and
the tool selector are summarized in Table 5.

16

TABLE 5 OPERATION AND TOOL SELECTION

 Feature or
 Subfeature Operation Tool Type

 chamfer_in machine_chamfer_in chamfer

 chamfer_out machine_chamfer_out chamfer

 contour_groove mill_contour_groove end_mill /2
ball_nosed_end_mill

 contour_pocket mill_contour_pocket end_mill

 countersink machine_countersink countersink

 groove mill_groove end_mill /2
ball_nosed_end_mill

 hole drill_hole /1 drill
mill_pocket end_mill

 pocket mill_pocket end_mill

 side_contour mill_side_contour end_mill

 straight_groove mill_straight_groove end_mill /2
ball_nosed_end_mill

 text mill_text ball_nosed_end_mill

 thread tap_thread tap

 Footnotes

1. In the case of a hole, if the hole is not a clean through hole, it is drilled
if its bottom is conical and milled if the bottom is flat. A clean through hole
is drilled if a drill of the right size is in the catalog. Otherwise, it is milled.

2. Grooves, contour_grooves, and straight_grooves are made with an
end_mill if they are flat-bottomed and with a ball_nosed_end_mill if they
are round-bottomed.

17

Select a Tool for Each Step

Once an operation has been selected, the tool selector first selects a type of
tool according to the operation and feature. Selecting the type of tool is simple in all
cases. Next it selects a diameter for the tool (and the number of threads per inch for
taps). Finally, it looks in the tool catalog and returns the name of the tool that has the
right type and diameter and is suitable for cutting the given material. If there is no
such tool in the catalog, an error message is returned.

Selecting the tool diameter is simple in all cases except for making
contour_pockets and side_contours. The tool diameter is determined by the
dimensions of the feature for: groove, contour_groove, straight_groove, text, hole (if
made by a drilling operation), and thread. The largest tool in the catalog smaller than
a certain size is selected for: face milling, fly cutting, and mill_pocket (for which the
upper limit is determined by the corner radius of the pocket). There is only one size
for a chamfer tool (0.375) and a countersink (0.75).

For contour pockets and side contours, the largest tool in the catalog that will
fit into the smallest corner of the feature is tentatively selected. Then the tool path
required to cut the outline of the feature is generated and a check is made of whether
the tool will cut away material it should not cut when it follows this path. If the check
is OK, the selection is made final. Otherwise, the next smaller tool in the catalog is
tried. This goes on until a size that works is found.

Order the Steps on Each Level

Next, the operations needed to make all the features on a each level are
ordered. To minimize tool changes, the current version of the ordering function has
a specific order in which it uses tool types: fly_cutter, face_mill, end_mill,
ball_nosed_end_mill, drill, chamfer, countersink, tap. Within type, tools are used in
decreasing diameter order.

Other algorithms for ordering the operations have been considered and could
be implemented. An ordering algorithm based on operation type was implemented
earlier but discarded in favor of the current algorithm. Clearly, any ordering
algorithm must be sure it makes parent features before subfeatures. In some cases
there is a preferred order for making subfeatures (countersink before tapping, for
example).

18

Add Other Items to Each Step

Finally, if the user has asked to have speeds, feed rates, stepovers, and pass
depths inserted (these four come as a package -- the option is called “extra items”),
this is done for each step. Step numbers and precedent steps are added to the list.
Precedent steps are assigned sequentially to force the plan to be executed
sequentially.

LIMITATIONS

The VWS2 Process Planning module is limited in a number of ways.

Only parts whose design can be expressed in the VWS2 design protocol can
have process plans generated for them.

Since the design protocol assumes that all features are made in the same side
of a part, a part requiring machining on more than one side requires a design for each
side being machined. A separate milling machine process plan must be made for
each design, and a workstation level process plan is needed to control sequencing of
the milling machine plans and handling of the workpiece between cuts. It is feasible
but tedious to make very complicated parts in this fashion.

The automatic process planner will generate a process plan for any design for
which tools of the right diameter (and the right number of threads per inch, in the
case of taps) can be found in the tool catalog. The process planner assumes, however,
that the tool will always be long enough to do the job. This is often not a correct
assumption. The verification subsystem will catch errors of this sort when the Data
Execution module is run. But there is no replanning capability in the VWS2 system
which could try to find some other method of machining.

Except for features which are related through the reference feature hierarchy,
the process planner has no notion of relations between features. If pocket A is
contained entirely within pocket B (a dumb design, perhaps, but not precluded by the
system), the planner will plan to make both pockets, when it would suffice to make
only the outer one. If features intersect, the order of machining generated by the
system may not be safe.

Although the VWS2 system is comfortable with making each subfeature of a
feature in a separate machining operation (a countersunk hole, for example requires
a hole-making operation and a countersink operation), and can handle counterboring
and center drilling adequately, it cannot deal with other types of making features in

19

more than one machining operation. It would be nice to be able to make large
features by first hogging then finishing. It would not be hard to add an operation like
“hog_mill_pocket” to the list of machining operations, but modeling the execution
of operations of this sort in the Data Execution module requires major changes to that
module and has not yet been undertaken.

Tolerance requirements cannot currently be expressed in the VWS2 design
protocol. It would be nice to have tolerances expressed and to vary the choice of
machining operations needed to make a feature according to the tolerance
requirements. Current work in the NBS process planning project, using a different
design protocol, addresses this need [12].

The system does not deal with cutting forces and how they might deform or
break the part during machining. For example, If a thin wall will result from milling
two adjacent features, the system does not detect the wall and take measures (such
as light cuts) to machine carefully around the wall.

The process planner does not prescribe fixturing. It assumes that the
workpiece will be fixtured so that all steps of the plan can be carried out. The
verification subsystem will detect interferences with fixturing, but, as noted earlier,
no replanning capability is provided.

ACKNOWLEDGEMENTS

The NBS Automated Manufacturing Research Facility is partially supported
by the Navy Manufacturing Technology Program.

Funding for the research performed by Dr. Thomas Kramer was provided to
Catholic University under Grant No. 60NANB5D0522 and Grant No.
70NANB7H0716 from the National Bureau of Standards.

DISCLAIMER

Certain commercial equipment and software is identified in this paper in order
to adequately specify the experimental facility. Such identification does not imply
recommendation or endorsement by the National Bureau of Standards, nor does it
imply that the equipment or software is necessarily the best available for the purpose.

20

REFERENCES

1. McLean, Charles R., “An Architecture for Intelligent Manufacturing Control”,
Proceedings of Summer 1985 ASME Conference, August 1985, Boston,
Massachusetts, ASME.

2. Nanzetta, P., “Update: NBS Research Facility Addresses Problems in Setups for
Small Batch Manufacturing”,Industrial Engineering, June 1984, pp. 68-73.

3. Simpson, J., Hocken, R., and Albus, J., “The Automated Manufacturing Research
Facility of the National Bureau of Standards”,Journal of Manufacturing Systems,
Volume 1, pp. 17-32.

4. Kramer, Thomas R., and Jun, J., “Software for an Automated Machining
Workstation”, Proceedings of the 1986 International Machine Tool Technical
Conference, September 1986, Chicago, Illinois, National Machine Tool Builders
Association, 1986, pp. 12-9 through 12-44.

5. Brown, Peter F., and McLean, Charles R., “Interactive Process Planning in the
AMRF”, Proceedings of a Conference on Knowledge-Based Expert Systems,
December 1986, Anaheim, California, ASME, 1986, pp. 245-262.

6. Brown, Peter F., and Ray, Steven R., “Research Issues in Process Planning at the
National Bureau of Standards”,Proceedings of the 19th CIRP International Seminar
on Manufacturing Systems, June 1987, Pennsylvania State University, not yet in
print.

7. Kramer, Thomas R., and Jun, J., “The Design Protocol, Part Design Editor, and
Geometry Library of the Vertical Workstation of the Automated Manufacturing
Research Facility at the National Bureau of Standards”, to appear as an NBSIR,
1987, 101 pages.

8. American National Standards Institute, “Industrial Engineering Terminology,
Production Planning and Control”, 1973, ANSI, p. 16.

9. Chang, Tien-Chien, and Wysk, Richard A., An Introduction to Automated Process
Planning Systems, New Jersey, Prentice-Hall, 1985, p. 15.

10. Ray, Steven R. and McLean, Charles R., “Process Plan Flat File Format”, not yet
published, 1987.

21

11. Kramer, Thomas R., “Process Plan Expression, Generation, and Enhancement
for the Vertical Workstation Milling Machine in the Automated Manufacturing
Research Facility at the National Bureau of Standards”, NBSIR 87 - 3678, National
Bureau of Standards, 1987, 56 pages.

12. Nau, Dana S., “Hierarchical Abstraction of Problem-Solving Knowledge”,
January, 1987.

